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If a �rst-order phase transition is terminated by collisions of new-phase bub-
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collide and the time thermal equilibrium is established. We study the behav-

ior of the order parameter during this phase. We �nd that large nonthermal

uctuations at this stage tend to restore symmetry, i.e., the order parame-

ter is smaller than its eventual thermal equilibrium value. We comment on

possible consequences for electroweak baryogenesis.
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It has long been known that symmetry may be restored at high temperature in local

thermodynamic equilibrium (LTE) [1]. Recently it was realized that certain nonequi-

librium (NEQ) conditions can be even more e�cient for symmetry restoration [2]. An

example of such a nonequilibrium state can arise naturally after ination in the so-called

preheating era [3, 4]. In fact, symmetry may be restored in the NEQ state even if it

is not restored in the LTE state formed by thermalization of the NEQ state. Detailed

numerical studies [5] con�rm that uctuations of inaton decay products is large enough

for symmetry restoration, as well as for several other important e�ects, including baryo-

genesis [6], and supersymmetry breaking [7], and generation of a background of relic

gravitational waves [8].

States with properties similar to those in preheating, namely, anomalously large uc-

tuations and highly NEQ conditions, can arise in other situations as well. It was sug-

gested in Ref. [9] that if bubble collisions produce large numbers of soft scalar particles

carrying quantum numbers associated with a spontaneously broken symmetry, the phe-

nomenon of (or tendency toward) symmetry restoration may occur. The basic point is

that bubble collisions create NEQ conditions with a large number of \soft" quanta of

average energy smaller than the equivalent LTE temperature corresponding to instanta-

neous conversion of the bubble energy density into radiation. Since it may require several

scattering times for the low-energy quanta to form a thermal distribution, it is rather

reasonable to consider the NEQ period as a separate epoch. This is generally referred

to as the `preheating' epoch in a manner similar to the preheating phase of slow-roll

ination [3].

The tendency of symmetry restoration in NEQ conditions after bubble collisions may

be readily understood by the following (somewhat oversimpli�ed) reasoning. Let us imag-

ine that particles � are produced in the bubble wall collisions and are charged under some

symmetry group, so that their mass, m�, depends upon some scalar �eld � (the order

1



parameter of the symmetry) as m2
�(�) = m2

0+ g�2.1 Here, g represents a combination of

numerical factors and a coupling constant. As a simple example we might assume that

the �-dependent mass originates from a potential term of the form V�� = (1=2)g�2�2.

As opposed to the large-angle scattering processes required for thermalization, forward-

scattering processes do not alter the distribution function of the particles, but simply

modify the dispersion relation. This is true in NEQ conditions, as well as the familiar

LTE conditions. Forward scattering is manifest, for example, as ensemble and scalar

background corrections to the particle masses. Since the forward-scattering rate is usu-

ally larger than the large-angle scattering rate responsible for establishing a thermal

distribution, the nonequilibrium ensemble and scalar background corrections are present

before the initial distribution function relaxes to its thermal value. These considerations

allow us to impose the dispersion relation !2 = p2 +m2
�(�) for NEQ conditions.

The leading contribution of the particles created by bubble collisions to the one-loop

e�ective potential of the scalar �eld � can be shown to be �V (�) ' (n=E)m2
�(�) [2, 10],

where n and E are the number density and the energy of the � quanta, respectively.

We may write the potential for the NEQ con�guration as �V (�) = BNEQ�
2, where

BNEQ = gn=E. In NEQ conditions, the coe�cient BNEQ may be quite large, indeed larger

that the corresponding equilibrium coe�cient which scales like T 2
RH, TRH de�ned as the

temperature of the universe when the thermal spectrum of radiation is �rst obtained.

Therefore, the tendency of symmetry restoration may turn out to be rather independent

of TRH. We also notice that since the energy E scales like the inverse of the bubble

wall width �, E � ��1, one can suggest that the e�ect of soft particles on symmetry

restoration is stronger for thick bubble walls.

The aim of the present paper is to investigate numerically the issue of symmetry

1Of course � particles may coincide with the � particles themselves, but in this example the colliding

bubbles are not made from the �eld �. Otherwise there can be some e�ect, but the original symmetry

will not be restored.
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restoration in bubble wall collision. We will explicitly show that at the �nal stage of �rst-

order phase transitions when bubble collisions occur, nonthermal quanta are produced,

and that they tend to restore symmetry. This tendency can be quanti�ed as a shift of

the order parameter � from its equilibrium value toward smaller values. We will also

con�rm the conjecture about the dependence of the strength of symmetry restoration

upon the bubble wall width. Finally, we will comment on the possible implications that

our result may have for electroweak baryogenesis.

Let us concentrate on a theory with a single scalar �eld � (the � particles of the

above discussions must be identi�ed with the �) with Lagrangian density

L =
1

2
@��@�

� � 1

2
m2�2 +

1

3
c�3 � 1

4
��4 � V0; (1)

where V0 is a constant. We introduce the dimensionless variables ' � �=�0, � �
p
��0 t,

and � =
p
��0 x, where �0 will be �xed later. In the new variables the factor ��40 is an

overall multiplication factor for the Lagrangian (fm = m=
p
��0, ec = c=��0, fV0 = V0=��

4
0)

L = ��40

�
1

2
@'�@'

� � 1

2
fm2'2 +

1

3
ec'3 � 1

4
'4 � fV0� � ��40

�
1

2
@'�@'

� � V (')

�
: (2)

The overall factor will not enter the equation of motion. The �nal step is a choice of

a potential, which we choose such that dV=d' = ' (' � 1) (' � 'm). The equation of

motion is then

2'+ ' ('� 1) ('� 'm) = 0 : (3)

With this choice of dV=d� the extrema of the potential are transparent: it has minima

at ' = 0 and ' = 1 and a local maximum at ' = 'm (we thus �x the parameter 'm to

be in the range 0 < 'm < 1). We shall assume ' = 1 corresponds to the true vacuum,

i.e., V (0) > V (1). Making the connection with Eq. (1), we conclude that � = �0 is the

�eld strength in the true vacuum, and the constants entering Eq. (1) are m2 = 'm ��20

and c = (1 + 'm)��0. We shall require the absence of cosmological constant in the true
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vacuum, V (1) = 0; this gives V0 = (1� 2'm)��
4
0=12. Since we consider the true vacuum

to be at ' = 1 and the false vacuum at ' = 0, we can further restrict the parameter 'm

to be in the range 0 < 'm < 0:5.

Note that only one parameter, 'm, enters the equation of motion in the rescaled

variables. This is a key point. The evolution of any initial �eld con�guration, '(� = 0; �),

for �xed 'm will be the same in the rescaled variables, regardless of the coupling constant

�.

The initial �eld con�guration for the problem at hand corresponds to a set of new-

phase critical bubbles expanding in the false vacuum. Note that the evolution of a critical

bubble is also de�ned by Eq. (3), and consequently it is �xed when 'm is �xed. However,

the bubble nucleation probability is a more complicated function of the other variables

(note that nucleation became unsuppressed when 'm ! 0, i.e, when the potential barrier

disappears). The nucleation probability will determine the initial separation of critical

bubbles (in space, as well as in time). In our numerical integration we will consider

the mean separation of bubble nucleation sites as another free parameter of the model .

Fixing it gives one extra constraint on the set of parameters �, �0 and 'm.

After nucleation, new phase bubbles expand and collide. After collisions, the spatial

distribution of the magnitude of ' resembles a random superposition of many wavelength

modes|a con�guration with large �eld uctuations. It is important that the system is

classical and can be described by Eq. (3) from the time of bubble nucleation, through

the time of bubble collisions and the condition of large �eld uctuations.

The random-wave con�guration is quickly established after bubble collisions; essen-

tially it is established on the time-scale of bubble collisions since there is no small param-

eters in Eq. (3). Eventually the waves interact and LTE is established. Since transform-

ing the NEQ distribution function into an LTE distribution function involves producing

states with small occupation number, the coupling constant � will enter the time scale
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for the establishment of LTE. This time scale can be very long if � is small, so the NEQ

con�guration can exist for a long time. This phase has speci�c properties which are the

subject of our study here.

First, let us recall what is expected in the �nal LTE state. The LTE temperature

can be found using energy conservation

g�
�2

30
T 4
LTE = V0 = ��40

(1� 2'm)

12
; (4)

which gives

TLTE =

 
�

g�

!1=4
�0

"
5(1� 2'm)

�2

#1=4
� �1=4�0 b; (5)

where b is a constant of order unity and g�(T ) is the number of relativistic degrees of

freedom at temperature T . Note that TLTE approaches zero as � approaches 0. Due to

interactions with the medium, LTE values of the model parameters, e.g., the e�ective

mass, are di�erent than vacuum values. The value of the parameters can be calculated

as loop corrections to the action. Most important is the change of the e�ective mass,

m2
e�(T ) = m2+ �T 2=4. At very high temperatures m2

e�(T ) becomes positive, even if the

zero-temperature value of m2 was negative. This is a signal that broken symmetries are

restored at high temperatures [1].

In the model of Eq. (1) which we consider here, the symmetry can not be restored

again after bubble collisions, but the temperature dependent contribution to the e�ective

mass will be nonzero. Using Eq. (5) we �nd that it scales with coupling constant as �3=2,

and tends to zero as � tends to 0. Note for what follows that the temperature-dependent

correction to the mass can be written in more general form, asm2
e� = m2+3�h�2�h�i2i.

Let us now �nd the mean value of the �eld ' in thermal equilibriumwith temperature

given by Eq. (5). To leading order in the coupling constants, the equation dVe�=d' = 0

becomes

('m + 3
p
�b2)'� (1 + 'm)'

2 + '3 � (1 + 'm)
p
�b2=12 = 0 ; (6)
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where terms proportional to
p
� are reminiscent of temperature-dependent corrections

to the e�ective potential rewritten in terms of our dimensionless variables. We see that

the solution of this equation tends to ' = 1 when �! 0. In other words, the mean value

of the �eld ' in thermal equilibrium (established after the phase transition is completed)

di�ers very little from the vacuum expectation value if the coupling constant is small.

We can study the process of bubble collisions and subsequent chaotization by numer-

ically integrating Eq. (3). We de�ned a 3-dimensional box of size l on a grid of size 1283

employing periodic boundary conditions. With periodic boundary conditions every bub-

ble in the box is mirrored by its (in�nitely repeating) reections. As the bubble expands

to �ll the box, it will collide with its reections, and there is no need to put more than

one bubble inside the box to study bubble collisions. So we have restricted ourselves to

an initial con�guration corresponding to just one critical bubble of the true phase in the

box. In this case the size of the box, l, corresponds to the mean initial separation of

bubbles in units of 1=�1=2�0. We integrated the equation of motion for l = 4; 8; 10 and

12, corresponding to progressively larger bubbles at collision time. We used 'm = 0:1

for the only parameter in the equation of motion.

The results for the time dependence of zero mode of the �eld, '0 = h'i, is presented

in Fig. 1, where h: : :i means the spatial average (over grid points). We see that after

bubbles have collided (� > 16 for l = 4 and � > 40 for l = 8), the zero mode does

not relax to is vacuum value, '0 = 1, but oscillates near some smaller value. We de�ne

'0 � h'i, where bar denotes the time average over several oscillations. We �nd '0 � 0:93

in the case l = 8 and '0 � 0:87 with l = 4 at � � 80. Note that '0 rises slightly with � ,

which is the sign of ongoing relaxation. We do not present results for l = 10 and l = 12

since they do not di�er appreciably from the case l = 8 ('0 at l = 12 is larger by an

about 0:01 than the corresponding value for l = 8).

The deviation of '0 from the vacuum value is not unexpected since a random �eld
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Figure 1: Time dependence of the zero-momentum mode, '0 = h'i. The dotted line

corresponds to initial bubble separation of l = 4, the solid line corresponds to l = 8.

of classical waves is created after bubble collision, i.e., Var(') � h'2i � h'i2, is nonzero.

The time dependence of the variance is shown in the Fig. 2. Note again that with �xed

initial conditions the variance does not depend upon �, i.e., it has a nonthermal origin.

At � � 80, with l = 8 we have Var(') � 0:036 and with l = 4 we �nd Var(') � 0:08.

Again we employ time averaging over several oscillations. At small � those values are

much larger than its equivalent LTE value Var(') = T 2
LTE=12 (see Eq. (5)). The fact

that Var(') in NEQ can exceed its equivalent LTE value by many orders of magnitude

was the main point of Ref. [2] which studied the preheating phase after ination, and

of Ref. [9] which studied conditions following bubble collisions. Our work supports the

claim in Ref. [9] that NEQ phase transitions can occur in models which contain more

degrees of freedom than the simple toy model of Eq. (1).

Let us see whether we can understand the deviation of the zero mode from its vacuum
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Figure 2: Time dependence of the variance, h'2i � h'i2. The dotted line corresponds to

initial bubble separation of l = 4, the solid line corresponds to l = 8..

value by the existence of a nonzero Var('). Let us decompose the �eld as ' = '0 + �',

and substitute this decomposition into the equation dV=d' = 0. We �nd in the Hartree

approximation

('m + 3h�'2i)'0 � (1 + 'm)'
2
0 + '30 � (1 + 'm)h�'2i = 0 : (7)

Assuming in addition the deviation of '0 from 1 to be small, we �nd

'0 = 1� 2� 'm

1� 'm + 3h�'2ih�'
2i : (8)

Using 'm = 0:1 and the values of h�'2i inferred from Fig. 2, we �nd '0 = 0:93 for l = 8

and '0 = 0:87 for l = 4, which are in excellent agreement with the results presented in

Fig. 1.

We can also understand the dependence upon l, the initial bubble separation. The

larger the initial bubble separation, the longer bubbles will expand before they collide.
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As a bubble expands, its wall thickness decreases. Hence, colliding bubbles in the l = 8

calculation are thinner than in the l = 4 case. Following the discussion in Ref. [9],

we expect the average energy of the quanta created in wall collisions to scale as ��1,

where � is the wall thickness at collision. Since the e�ect of the background on the

e�ective potential scales as n=E / �, we expect the l = 4 calculation to result in a

larger departure from the vacuum value. This expectation is con�rmed by the results

shown in the �gures.

Even though we only examine a particularly simple model, we conjecture that a de-

viation of '0 from its thermal equilibrium value in the aftermath of bubble collisions

may have important consequences for some applications of �rst-order phase transitions,

e.g., electroweak baryogenesis. In any scenario where the baryon asymmetry is gener-

ated during a �rst-order electroweak phase transition, the asymmetry is generated in the

vicinity of bubble walls, and a strong constraint on the ratio between the vacuum expec-

tation value of the Higgs �eld inside the bubble and the temperature must be imposed,

h�(T )i=T > 1 [11]. This bound is necessary for the just created baryon asymmetry

to survive the anomalous baryon violating interactions inside the bubble, and may be

translated into an severe upper bound on the physical mass of the scalar Higgs parti-

cle. Combining this bound with the LEP constraint already rules out the possibility of

electroweak baryogenesis in the standard model of electroweak interactions, and even

leaves little room for electroweak baryogenesis in the minimal supersymmetric exten-

sion of the standard model [12]. Since the rate of anomalous baryon number violating

processes scales like exp(�h�i=T ), it is clear that even a small change in the vacuum

expectation value of the Higgs scalar �eld from its equilibrium value may be crucial for

electroweak baryogenesis considerations. Our results suggest that imposing the bound

h�(T )EQi=T > 1 may not be a su�cient condition for successful electroweak baryogene-

sis. NEQ e�ects at the completion of the phase transition may reduce the expectation
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value of the Higgs �eld, thus enhancing the anomalous baryon number violating rate

with respect to its equilibrium value, making the upper bound on the Higgs mass more

severe. Applications of our considerations to the electroweak transition may result in

a fatal blow to many scenarios involving extensions of the standard model where the

baryon asymmetry is generated during the electroweak phase transitions.

The model we consider in this paper is quite simple, but it illustrates several points.

The most important result is that NEQ conditions following bubble collisions can have

a dramatic e�ect upon the e�ective potential. Although the model we study is too

simple to result in symmetry restoration, the numerical results con�rms the assumptions

made in Ref. [9] about the e�ciency of NEQ conditions. We mentioned a possible

direct application of our results to electroweak baryogenesis, but we believe that the

phenomenon of NEQ e�ects will have other implications as well.
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